报告人:范恩贵 教授 复旦大学
报告题目:The Cauchy problem for the Degasperis-Procesi equation: Painleve asymptotics in transition zones
时间:2025年11月18日16:00-17:00
地点:数学楼2-1会议室
摘要:
The Degasperis-Procesi (DP) equation is an integrable model of the Camassa-Holm type and admits a 3*3 matrix Lax pair. We derive the leading order approximation to the solution of Cauchy problem for the DP equation in terms of the solutions for the Painleve II equation in two transition zones. Our results are established by performing the Dbar-generalization of the Deift-Zhou nonlinear steepest descent method and applying a double scaling limit technique to an associated vector Riemann-Hilbert problem.
报告人简介:
范恩贵,复旦大学数学科学一分快三
教授、博士生导师。主要研究方向是孤立子理论、Riemann-Hilbert问题、正交多项式和随机矩阵理论。主持国家自然科学基金、上海曙光计划等多项研究课题。在CMP、Adv. Math.、SIAM Math. Anal.、JDE等国际重要期刊上发表论文百余篇,被SCI刊源他引三千余次。获教育部自然科学二等奖、上海市自然科学二等奖、复旦大学谷超豪数学奖等荣誉。
邀请人:刘小川 教授